TGF-β1 epigenetically modifies Thy-1 expression in primary lung fibroblasts.
نویسندگان
چکیده
Idiopathic pulmonary fibrosis is a progressive lung disease that increases in incidence with age. We identified a profibrotic lung phenotype in aging mice characterized by an increase in the number of fibroblasts lacking the expression of thymocyte differentiation antigen 1 (Thy-1) and an increase in transforming growth factor (TGF)-β1 expression. It has been shown that Thy-1 expression can be epigenetically modified. Lung fibroblasts (PLFs) were treated with TGF-β1 ± DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-AZA) and analyzed for Thy-1 gene and protein expression, DNMT protein expression, and activity. α-Smooth muscle actin (α-SMA) and collagen type 1 (Col1A1) gene and protein expression was assessed. PLFs were transfected with DNMT1 silencing RNA ± TGF-β1. TGF-β1 inhibited Thy-1 gene and protein expression in PLFs, and cotreatment with 5-AZA ameliorated this effect and appeared to inhibit DNMT1 activation. TGF-β1 induced Thy-1 promoter methylation as assessed by quantitative methyl PCR. Treatment with 5-AZA attenuated TGF-β1-induced Col1A1 gene and protein expression and α-SMA gene expression (but not α-SMA protein expression). Inhibiting DNMT1 with silencing RNA attenuated TGF-β1-induced DNMT activity and its downstream suppression of Thy-1 mRNA and protein expression as well as inhibited α-SMA mRNA and Col1A1 mRNA and protein expression, and showed a decreased trend in Thy-1 promoter methylation. Immunofluorescence for α-SMA suggested that 5-AZA inhibited stress fiber formation. These findings suggest that TGF-β1 epigenetically regulates lung fibroblast phenotype through methylation of the Thy-1 promoter. Targeted inhibition of DNMT in the right clinical context might prevent fibroblast to myofibroblast transdifferentiation and collagen deposition, which in turn could prevent fibrogenesis in the lung and other organs.
منابع مشابه
Identification of transforming growth factor-beta-regulated microRNAs and the microRNA-targetomes in primary lung fibroblasts
BACKGROUND Lung fibroblasts are involved in extracellular matrix homeostasis, which is mainly regulated by transforming growth factor-beta (TGF-β), and are therefore crucial in lung tissue repair and remodeling. Abnormal repair and remodeling has been observed in lung diseases like COPD. As miRNA levels can be influenced by TGF-β, we hypothesized that TGF-β influences miRNA expression in lung f...
متن کاملIncreased expression of transforming growth factor-β and receptors in primary human airway fibroblasts from chemical inhalation patients.
The widespread use of sulfur mustard (SM) as a chemical warfare agent in the past century has proved its long-lasting toxic effects. Despite a lot of research over the past decades on Iranian veterans, there are still major gaps in the SM literature. Transforming growth factor (TGF-β), a cytokine that affects many different cell processes, has an important role in the lungs of patients with som...
متن کاملLoss of fibroblast Thy-1 expression correlates with lung fibrogenesis.
Fibroblasts consist of heterogeneous subpopulations that have distinct roles in fibrotic responses. Previously we reported enhanced proliferation in response to fibrogenic growth factors and selective activation of latent transforming growth factor (TGF)-beta in fibroblasts lacking cell surface expression of Thy-1 glycoprotein, suggesting that Thy-1 modulates the fibrogenic potential of fibrobl...
متن کاملHMGB1 induces lung fibroblast to myofibroblast differentiation through NF-κB-mediated TGF-β1 release
The proinflammatory factor high‑mobility group box protein 1 (HMGB1) has been implicated in the pathogenesis of lung fibrosis; however, the role of HMGB1 in lung fibrosis remains unclear. It has previously been reported that nuclear factor (NF)‑κB and transforming growth factor (TGF)‑β1 may be involved in lung fibrosis. Therefore, the present study aimed to examine the potential molecular mecha...
متن کاملRapamycin Inhibits Transforming Growth Factor β1-Induced Fibrogenesis in Primary Human Lung Fibroblasts
PURPOSE The present study was designed to determine whether rapamycin could inhibit transforming growth factor β1 (TGF-β1)-induced fibrogenesis in primary lung fibroblasts, and whether the effect of inhibition would occur through the mammalian target of rapamycin (mTOR) and its downstream p70S6K pathway. MATERIALS AND METHODS Primary normal human lung fibroblasts were obtained from histologic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 309 9 شماره
صفحات -
تاریخ انتشار 2015